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Nonequilibrium structural changes of a viscoelastic liquid under oscillatory shear:
A molecular dynamics study
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The structural changes of a concentrated liquid under an oscillatory shear are investigated by
nonequilibrium molecular dynamics simulations. In simulations starting from a liquid, two successive
structural changes to layered structures are reproduced, which corresponds well with the experiments
by Ackerson and Pusey [Phys. Rev. Lett. 61, 1033 (1988)]. The nonequilibrium phase diagrams in
the space of the frequency, the shear rate, and the number density are also obtained. The nature
of the transition from a liquid to ordered structures changes with the frequency. The shear-induced
melting is observed at low frequency, while the shear-induced freezing occurs at high frequency. We
also find that the behavior of the viscoelastic properties near the shear-induced freezing line is well

described by the Maxwell viscoelastic model.

PACS number(s): 82.70.—y, 83.20.Hn, 64.60.—i, 66.20.4+d

I. INTRODUCTION

Colloidal suspension systems display a variety of char-
acteristic behavior under shear flows [1-6]. In the experi-
ments under the steady shear flow, Hoffman investigated
the structure of the concentrated suspensions at the point
where the viscosity exhibits a discontinuous change. He
analyzed light diffraction patterns and indicated that an
order-disorder transition occurs at this point [2]. Ack-
erson and Clark investigated the shear-induced melting
of the charged colloidal crystal by light scattering and
observed that a phase change from the bcc crystal to
a disordered structure occurs with increase of the shear
rate [4-6].

The behavior under a steady shear has also been in-
vestigated extensively in computer simulations [7-13].
One of the typical simulation methods employed in the
study of non-Newtonian fluids (i.e., fluids characterized
by a shear rate dependent viscosity) is the nonequilib-
rium molecular dynamics (NEMD). Erpenbeck discov-
ered the string phase in a hard sphere system in a high
shear rate region by the NEMD [7]. Particles are aligned
along lines parallel to the flow direction and move keep-
ing the sequence in the string. The string phase has also
been observed in the study with Brownian dynamics sim-
ulations [12,13], but has not yet been confirmed in the
experiments.

Hess investigated the structural change at solid density
in a soft sphere system and observed not only the shear-
induced melting of the bcc crystal at an intermediate
shear rate but also the shear-induced freezing at a higher
shear rate [8]. Stevens et al. applied NEMD to a Yukawa
system, which is a model for charge-stabilized colloidal
suspensions, and studied both the shear-induced melting
and ordering under the steady shear, and obtained the
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nonequilibrium phase diagram in terms of the shear rate
and the concentration of the added salt [10,11].

The characteristic structural changes under an oscilla-
tory shear flow were studied experimentally by Ackerson
and Pusey [14,15]. In a liquid just below the freezing con-
centration, structural changes to two layered structures
were observed with an increase of the amplitude of the
shear oscillation. They considered that the close packed
layers are formed perpendicular to the velocity gradient
vector and oscillate, synchronizing with the shear in both
ordered structures. The intermediate phase exhibited a
light scattering pattern corresponding to the fcc crystal
when the spectrum was taken in a narrow period near
the extrema of the oscillation cycle. As a result, Ack-
erson and Pusey called this the “fcc” structure, and we
will follow this notation. At a higher shear rate, a sixfold
scattering pattern was observed. The orientation of the
spots was rotated by 30° from that in the “fcc” structure.
This structure is called the “layer” structure.

Recently, Yan et al. [16] investigated these structural
changes with charge-stabilized colloidal particles and ob-
tained the same results as those of Ackerson and Pusey.
They also indicated that a series of the structural changes
depend on the amplitude and the frequency of oscillation.

We carried out NEMD simulations in a model atomic
system interacting via a short range repulsive force and
studied the structural changes under the oscillatory shear
at density corresponding to the crystalline phase in equi-
librium [17]. In simulations starting from a fcc crys-
tal, we obtained two successive structural changes. The
structures appearing at high shear rates correspond well
to the results in the colloidal suspension system. The
stability of the fcc crystal, the “fcc” structure, and the
“layer” structure were investigated in a sliding layer
model [2,15,17]. The feature of the structures and the na-
ture of the structural changes were explained as follows.
Each structure is depicted schematically in Fig. 1. The
oscillation of a particle relative to particles in the neigh-
boring close packed layer is indicated by double-headed
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FIG. 1. Three typical structures appearing in the oscilla-
tory shear flow: (a) the fcc crystal, (b) the “fcc” structure,
and (c) the “layer” structure. The solid circles and arrows
represent the oscillation center and the oscillation of a parti-
cle relative to the particles in the neighboring layer.

arrows. In equilibrium or at a small shear rate, a particle
oscillates near a stable point situated just above the cen-
ter of a triangle formed by particles in the neighboring
layer [Fig. 1(a)]. If the amplitude of the oscillation is
increased, the particle will overlap with a particle in the
neighboring layer. The center of the oscillation will shift
to the central point of the edge at an intermediate shear
rate. A particle visits two centers of the triangle (the
lowest energy points) during an oscillation cycle. This
is the “fcc” structure [Fig. 1(b)]. If the amplitude is
further increased, the overlap occurs once again. In this
situation, the direction of the oscillation is changed by
30° and a particle moves along a valley in the neighbor-
ing close packed layer. This is the “layer” structure [Fig.
1(c)].

In the present article, we extend our former study and
present simulations changing the density and the fre-
quency. In simulations starting from a liquid, we repro-
duced the structural changes corresponding well with the
experiments by Ackerson and Pusey.

The outline of the paper is as follows. In Sec. II, the
NEMD method and the model for this study are briefly
reviewed. In Sec. III A, results of our simulations start-
ing from a liquid state are presented and compared with
the experimental results by Ackerson and Pusey. In Sec.
III B, the structural changes are studied in a space of
the shear rate, the frequency, and the density, and the
nonequilibrium phase diagrams are obtained. In Sec.
III C, the viscoelastic properties of the liquid are stud-
ied near the transition line between the liquid and the
ordered structures.

II. SIMULATION METHOD AND MODEL

Detailed descriptions of the simulation method have
been reported previously [17,18]. In this section, we give
only a brief description.

We used the Sllod algorithm (so called because of its
close connection to the Dolls tensor algorithm) to simu-
late a system undergoing an oscillatory shear flow. The
Sllod method is known to be applicable not only in the
linear but also in the nonlinear region of the shear flow
when a thermostat is not introduced [19]. Since heat is
generated in this type of nonequilibrium simulations, a
thermostat should be added to the equations of motion
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to remove this heat from the system. We employed the
Gaussian constraint thermostat assuming a linear veloc-
ity profile [20-22]. Equations of motion were integrated
with a fifth-order predictor-corrector algorithm. More-
over, to realize the homogeneous shear deformation, the
Lees-Edwards periodic boundary condition was imposed
[23].

In the NEMD method, the viscosity 7 is calculated
from a ratio of the shear stress P,, and the shear rate
4. We choose the direction of the shear velocity and the
velocity gradient along the = and y axes, respectively.
Then the shear rate and the viscosity are given by

. Ovg
1=3, (1)
and
P,
n= *4a (2)
v

where P,, is the xy component of the shear stress and
v, is the flow velocity. With a time dependent shear
rate 4 = 7 exp(iwot), the frequency component of the
viscosity n(w) is given by

_ Pyy (w)
Yo

n(w) = §(w — wo), 3)
where P, (w) is the temporal Fourier-Laplace transform
of Ppy(t) and 6(w — wo) is the Dirac delta function.
In our simulations, a sinusoidally changing shear rate
(t) = o cos(wot) was applied. The complex shear vis-
cosity n(w) at w = wo was calculated by

N(wo) = nr(wo) + 17 (wo)
~1

_ ( / " ds cos(wos) Pay (s)ds

ot
+i/0 dssin(wos)sz(s)ds), (4)

where 7, and 7; are the real and the imaginary parts of
n(wo).

The colloidal system used in the experiments by Ack-
erson closely resembles the hard sphere system [15]. The
most dominant factor determining the structural changes
under the driving shear forces is considered to be the re-
pulsive force due to the overlap of atomic cores [24,25]. It
is known that the structural changes under a steady shear
do not depend much on the details of interatomic inter-
actions. In all NEMD simulations with hard sphere, soft
sphere, and Lennard-Jones systems, qualitatively similar
results have been obtained [9]. Therefore, we employed
an atomic system interacting via the Weeks-Chandler-
Andersen (WCA) potential to simulate the colloidal sus-
pension system,

¢(r)={4‘{(%)12“(%)6}“ (r<2to) g

0 (r>2s0),
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which is the Lennard-Jones potential truncated at r. =
21/85 and expresses a short range repulsive interaction
between colloidal particles. This potential has a merit of
saving a computational effort since the truncation point
is shorter than that of other types of interactions.

Reduced units with the characteristic energy €, the
length o, and the mass of a particle m were introduced.
Then, the unit of time is (mo?/€)'/2 and the unit of tem-
perature is €/k. In this scaled system, a triple point of
the WCA potential occurs at 7" = 0.75 and p = 0.96. In
the calculation of 7(wo), the amplitude of the shear os-
cillation was increased stepwise with an increment of 0.4.
Averages of physical quantities at each g were taken over
the runs of 200 oscillation cycles. Even in the test com-
putation at 79 = 0.1 and p = 0.86 where the system is
dominated by the thermal fluctuation, the error of n(wo)
was less than 1%. In the nonequilibrium simulations, the
choice of the time step §t is important and must also take
into account the time scale for the applied shear. In our
simulations, dt ranges from 7 /8000 to 7 /2000, depending
on 7o, wo, and p.

The initial configuration at vo = 0.0 was set to the fcc
crystal whose (111) vector directs parallel to the velocity
gradient vector (y axis). In this orientation, the simula-
tion cell consists of orthorhombic unit cells containing six
particles in each of them under the constant volurmie con-
dition. The system size is given by N = 6 N, N, N,, where
N, Ny, and N, are the number of the cells in the z, y,
and z directions. We adopted N = 504 (6 x 4 x 3 X 7) in
the calculation of 7(wp). We repeated simulations with a
2520 (6 x 7 x 5 x 12) particle system at several vo to study
the particle configurations more carefully. Moreover,
to investigate the system size dependence of the phase
change, the simulations with N = 10032 (6 x 11 x 8 x 19)
were carried out at p = 0.86 and wg = 20.0. These three
types of system size are chosen so that the simulation cell
resembles the cube.

III. RESULTS
A. Structural change at p = 0.86 and wo = 20.0

In this section, we show the shear rate dependence of
the structure at p = 0.86 and 7' = 0.75 corresponding to
a liquid slightly below the triple point density at equilib-
rium. The frequency of the shear oscillation is wy = 20.0,
which corresponds to the inverse of the Maxwell relax-
ation time. The analysis of the dynamical behavior in
the liquid in terms of the Maxwell viscoelastic theory
will be presented in Sec. IIIC.

The v, dependence of the non-Newtonian shear vis-
cosity 7, and #; is shown in Figs. 2(a) and 2(b). To
investigate the system size dependence, simulations with
three different system sizes N = 504, 2520, and 10032
were carried out. The solid, the open circles, and the
crosses indicate the results obtained in N = 504, 2520,
and 10032 systems, respectively. The increment of -,
is 0.4 in the case of N = 504, 1.0 (N = 2520), and 0.8
(N =10032). The viscosity curves with different system
sizes agree fairly well. We concluded that the system
size dependence is not significant in our simulation and
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FIG. 2. The o dependence of the real and the imaginary
parts of n(wo) at p = 0.86 and T = 0.75. The solid, the
open circles, and the crosses indicate the results of N = 504,
N = 2520, and N = 10032, respectively. The rapid decreases
are observed near o = 5.0 and o = 14.0.

further simulations were carried out with N = 504 and
N = 2520 particles. However, we should remark that
our simulations were carried out with periodic boundary
conditions. If the correlation length of the order is longer
than the simulation cell, the local order is strengthened
by this. We found that the system size dependence in
N = 504, 2520, and 10032 systems is not significant in
our study, but simulations with a far larger system might
exhibit a deviation from the conclusions obtained in our
simulations with relatively small system sizes.

For small ~p, highly non-Newtonian behavior is ob-
served; the shear viscosity changes with the shear rate.
But the system in this small shear region retains a lig-
uid phase. Figure 3(a) shows an atomic configuration
projected onto the yz plane at vy = 4.0. No layered
structure is discernible.

At about o = 5.0, the 7, and the 7; decrease very
sharply. This indicates the structural change from a lig-
uid to an ordered structure. Actually, the snapshot at
Yo = 8.0 [Fig. 3(b)] shows a layered structure parallel
to the zz plane coexisting with a disordered phase. This
disordered phase was also observed even after the sim-
ulations were extended to 1000 cycles. Therefore, this
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FIG. 3. Particle configurations projected onto the yz
planes. The system size N is 2520. (a), (b), (c), and (d)
represent the results after the simulation runs of 100 cycles at
Yo = 4.0, 8.0, 11.0, and 16.0, respectively. (e) represents the
result at the same vo as (d) after 1000 cycles.

coexistence is considered steady. The densities of the
coexisting phases are 0.7 and 1.0. The boundary be-
tween the disordered structure and the layered structure
in the coexistence region shows the same orientation as
the case of the liquid and the string phase reported in the
NEMD simulations under the steady shear flows [9,26].
At v = 11.0 [Fig. 3(c)], the ordered structure extends
to almost all regions of the simulation cell.

At o = 14.0, the viscosity curve takes the second rapid
decrease. This indicates that another structural change
occurs at this shear rate. At yo = 16.0 [Fig. 3(d)], a
new type of layer is partially produced near the left edge
of the simulation cell. We can see distinct spots belong-
ing to the new type of layer whose pattern is different
from that shown in Fig. 3(c). Three distinct structures
can be recognized in this figure; a disordered phase and
two types of layered structures. The coexistence of two
types of layered structures is transient, while the coexis-
tence between layered structures and a disordered struc-
ture is steady. Actually, the number of layers of the new
type increased gradually as the simulation was contin-
ued longer. After total runs of 1000 cycles [Fig. 3(e)],
the ordered part changed completely to the new layered
structure. The disordered phase observed in this shear
region disappeared above vy = 18.0.

The difference between the two layered structures is
the orientation of triangular lattices in each layer. We
investigated the orientation of the bond vectors to dis-
tinguish two layered structures. A bond is defined as
a vector connecting a pair of neighboring particles be-
longing to the same layer perpendicular to the velocity
gradient vector (the y axis). We calculated the distribu-
tion f(6) of the angle 6 between the bond vector and the
flow direction (the z axis). From Figs. 1(b) and 1(c), we
expect that f(6) should have peaks at § = 30°,90°, and
150° in the “fcc” structure and at 6 = 0°,60°,120°, and
180° in the “layer” structure. In Fig. 4, the distributions
at yo = 12.0 (solid curve) and vo = 20.0 (dashed curve)
are depicted. We conclude that the system forms the
“fcc” structure at v9 = 12.0 and the “layer” structure at
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FIG. 4. The distribution of the angle between the bond
vector and the flow direction. The solid and the dashed
curves represent the results at yo = 12.0 (“fcc” structure)
and vo = 20.0 (“layer” structure).
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Yo = 20.0.

From the shape of the peaks in the angular distribution
function, we can estimate the degree of the distortion of
the lattice. In the “fcc” structure, the three peaks have
roughly the same height and width. Therefore, the trian-
gular arrangement is kept fairly well at a small shear rate.
On the other hand, in the “layer” structure, the peaks at
0 = 0° or 180° are sharp but the peaks at 8 = 60° and
120° are broader than any other peak in Fig. 4. Parti-
cles tend to be arranged into a line parallel to the flow
but there is some distortion in the relative arrangement
of these lines. When the applied shear is increased fur-
ther, the correlation between neighboring lines becomes
weaker. This is a feature similar to the string phase ob-
served in simulations under the steady shear.

B. Nonequilibrium phase diagrams

We repeated simulations similar to those presented in
Sec. IITA, changing the number density p and the fre-
quency wp, and obtained nonequilibrium phase diagrams
in the space of vp,wp, and p. Simulations were carried
out in a 504 particle system. We determined the change
of structures by the snapshots of atomic configurations
and by the change of the viscosity curve. The diagrams
presented in this section are not proper phase diagrams.
It is indicated where new structures were observed, even
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FIG. 5. The nonequilibrium phase diagrams in the space
of wo and 7. (a) and (b) represent the results at p = 0.86
(liquid) and p = 0.96 (crystal), respectively.
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partially, with increase of the amplitude of the shear rate.
We did not distinguish between a single phase and coex-
isting regions because it is very difficult to determine the
phase boundary accurately in the coexistence region from
the simulations in a small system as reported here.

The phase diagrams in the 7yg-wo space are shown at
densities p = 0.86 [liquid at equilibrium, Fig. 5(a)]
and p = 0.96 [crystal at equilibrium, Fig. 5(b)]. The
liquid region means that we did not detect any lay-
ered structures. In the high frequency region (roughly
wp > 4.0), the equilibrium structure changes successively
to the “fcc” and the “layer” structures with increase of
~Yo. These structural changes (especially at p = 0.86)
correspond well to those observed in a colloidal system.
In the low frequency region (wo < 4.0), the situation
changes. In the liquid case (p = 0.86), the phase of the
“fcc” structure disappears and only the transition from
the liquid to the “layer” structure is observed. In the
crystal case (p = 0.96), the “fcc” structure melts by fur-
ther application of the shear and a liquid phase appears.
We determined this melting point on the basis of the
sharp increase of the viscosity.

The phase diagrams in the ~o-p space (Fig. 6) show
clearly the difference of the structural changes in low and
high frequency regions. The frequencies are wg = 8.0 in
Fig. 6(a) and wo = 4.0 in Fig. 6(b). The density of
the triple point in a WCA system is p = 0.96. At wg =
8.0, shear-induced freezing is observed. The equilibrium
liquid at densities above p = 0.85 changes to the “fcc”
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FIG. 6. The nonequilibrium phase diagrams in the space
of 70 and p. (a) and (b) represent the results at w = 8.0 (high
frequency) and wo = 4.0 (low frequency), respectively.
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structure with increase of 9. On the other hand, at
wo = 4.0, there is no density region in which the “fcc”
phase emerges from the liquid, and the shear-induced
melting occurs in the crystal region below p = 1.0. The
gradient of the phase boundary between the liquid and
the “fcc” structure dp/dvyo shows these tendencies clearly.
At high frequency, it is negative, while at low frequency,
it is positive.

The cause of the different behavior of these structural
changes is qualitatively explained as follows. In the low
frequency region, the time scale determined by the shear
oscillation is longer than the Brownian relaxation time.
Thus, the motion of particles is dominated by Brownian
relaxations. Therefore, the system tends to be random.
This mechanism causes the shear-induced melting of the
“fcc” structure in the crystal region and the disappear-
ance of the “fcc” structure at a low shear rate in the
liquid region. Under the shear with high frequency, the
period of the shear oscillation becomes shorter than the
relaxation time and each particle is forced to move col-
lectively by the shear before it relaxes to the equilibrium
state. Therefore, the system tends to be ordered. This
mechanism causes the shear-induced freezing of the lig-
uid.

We can give quantitative support for this interpre-
tation. The two competitive factors can be connected
with two typical time scales: the Brownian relaxation
time 7 and the inverse of the shear rate 1/4 [12]. The
Peclet number P, = 7% is introduced as a ratio of these
two competitive factors [27]. In our case, the phase
boundary between a liquid and layered structures is sit-
uated near 79 = 4.0 throughout the frequency region
we investigated. The value y9 = 4.0 corresponds to
P, ~ 1.0 because the relaxation time is estimated to be
0.25 [2.5 x 1072 (ps)] in the WCA system at p = 0.86
and T = 0.75. At P, = 1.0, the influence of the Brown-
ian force is comparable to that of the shear force. In the
experiment by Ackerson, the significant distortion of the

N(wo )

o

FIG. 7. The frequency dependence of the viscosity at
Yo = 2.8. The open and the solid circles represent the real
and the imaginary parts, and two lines are the results of Eq.
(6) with 7 = 1/20.0. Each data is normalized by the values
of the real part at wo = 0.0.

equilibrium liquid also occurs at P, ~ 1 [5,6]. Then, our
results for the nonequilibrium phase diagram support the
interpretation that the shear-induced structural change
relates to the balance between two competitive factors,
the Brownian force and the shear force.

C. Viscoelasticity in the liquid region

In the preceding section, we presented the results of
the frequency dependence of the structural changes. In
this section, we are concerned with the transition be-
tween the liquid and the layered structures and analyze
the frequency dependence of the viscosity of the liquid
near the shear-induced freezing line.

Figure 5(a) shows that, in the simulations starting
from the fluid at p = 0.86, the system retains a liquid
phase in the range 0 < v < 3.0 throughout the frequency
region we investigated. The frequency dependence of the
viscosity n(wp) of the liquid at o = 2.8 is shown in Fig.
7 and the n(wg) expresses well the viscoelastic behav-
ior of the liquid; the system becomes viscous at low fre-
quency and elastic at high frequency. The open and the
solid circles indicate the real and the imaginary parts of
the viscosity, 7, (wo) and 7;(wo), respectively. Each data
is normalized by the 7, at wg = 0.0. With increase of
the frequency, the 7, decays rapidly, tending to zero as
wg — oo. This behavior is consistent with a number
of experiments and the theoretical results [28-32]. The
1;(wo) relates with the energy dissipation due to the vis-
cous properties. The n;(wo) is zero at we = 0.0 (¢ — o0)
because the system is steady and there is no dissipation.
As the frequency increases, the dissipation induced in the
system increases 7;. But in the high frequency region
where the elastic properties dominate, the system can-
not follow the oscillation, and the dissipation decreases
rapidly. Therefore, the n;(wo) has a peak at a critical
frequency. The value of wyg is roughly estimated to be 20
from Fig. 7.

A simple model for the viscoelasticity in a liquid is the
Maxwell model [33]. In this model, a spring (an elastic
part) and a dash-pot (a viscous part) are coupled in se-
ries, and the total viscoelasticity is expressed as sum of
contributions from both parts. The frequency dependent
viscosity in this model is expressed by

n
(o) = 11—, (®)
where 7 is the characteristic relaxation time: the inverse
of the frequency where the 7;(wo) takes the maximum
value.

The results of Eq. (6) with 7 = 1/20 are depicted in
Fig. 7 by lines. They agree fairly well with the NEMD
results.

As mentioned in Sec. IIIB, the nature of the phase
transition changes in the range from wg = 4.0 to wo =
8.0; the shear-induced melting occurs at low frequency
and the shear-induced freezing is observed at higher fre-
quency. This region is smaller than 1/7 = 20, but still in
the range of the region where the viscous and the elastic
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factors are competing. Therefore, we think that this type
of transition between a liquid and ordered structures is
determined from the balance between the viscous and the
elastic factors.

IV. CONCLUSION

We carried out nonequilibrium molecular dynamics
simulations in an atomic system interacting via the WCA
repulsive potential undergoing an oscillatory shear flow.
In our simulations starting from the liquid state, struc-
tural changes closely corresponding with those observed
in experiments by Ackerson and Pusey were obtained.
We repeated simulations changing the frequency and the
density, and obtained the nonequilibrium phase diagram
in the space of the frequency, the amplitude of the shear
oscillation, and the density. We found that the feature of
the structural change between a liquid and ordered struc-
tures is different in the low and high frequency regions.
At low frequency, the shear-induced melting of the crys-
talline phase was observed, while at high frequency, the

HIROSHI KOMATSUGAWA AND SHUICHI NOSE 53

shear-induced freezing of the liquid occurred.

We also found that the frequency dependence of the
viscosity in the shear-induced liquid is fairly well de-
scribed by the Maxwell viscoelastic model. This fact
indicates that the dynamical behavior is dominated by
the viscous properties related to the Brownian motion
at low frequency, and by the elastic properties related to
the shear at high frequency. Our result indicates that the
structural changes under an oscillatory shear is related to
these two competing factors.

ACKNOWLEDGMENTS

We thank J.I. Penman for reading the manuscript care-
fully. This work is supported by a Grant-in-Aid for Scien-
tific Research on Priority Areas, “Computational Physics
as a New Frontier in Condensed Matter Research,” from
the Ministry of Education, Science, and Culture, Japan.
The computations were carried out at Keio University
Computer Center and at the Computer Center of the In-
stitute for Molecular Science.

[1] P. Pieranski, Contemp. Phys. 24, 25 (1983).

[2] R.L. Hoffman, Trans. Soc. Rheol. 16, 155 (1972).

[3] M. Tomita and T.G.M. van de Ven, J. Colloid Interface
Sci. 99, 374 (1984).

[4] B.J. Ackerson and N.A. Clark, Phys. Rev. Lett. 46, 123

(1981).

[5] B.J. Ackerson and N.A. Clark, Phys. Rev. A 30, 906
(1984).

[6] N.A. Clark and B.J. Ackerson, Phys. Rev. Lett. 44, 1005
(1980).

[7] J.J. Erpenbeck, Phys. Rev. Lett. 52, 1333 (1984).
[8] S. Hess, Int. J. Thermophys. 6, 657 (1985).
[9] D.M. Heyes, J. Chem. Soc. Faraday Trans. 2 82, 1365
(1986).
[10] M.J. Stevens, M.O. Robbins, and J.F. Belak, Phys. Rev.
Lett. 66, 3004 (1991).
[11] M.J. Stevens and M.O. Robbins, Phys. Rev. E 48, 3778
(1993).
[12] J.R. Melrose, Mol. Phys. 76, 635 (1992).
[13] W. Xue and G.S. Grest, Phys. Rev. Lett. 64, 419 (1990).
[14] B.J. Ackerson and P.N. Pusey, Phys. Rev. Lett. 61, 1033
(1988).
[15] B.J. Ackerson, J. Rheol. 34, 553 (1990).
[16] Y.D. Yan, J.K.G. Dhont, C. Smits, and H.N.W. Lekkerk-
erker, Physica A 202, 68 (1994).
[17] H. Komatsugawa and S. Nosé, Phys. Rev. E 51, 5944
(1995).
(18] D.J. Evans and G.P. Morriss, Statistical Mechanics of
Nonequilibrium Liquids (Academic Press, New York,

1990), Chap. 6.

[19] D.J. Evans and G.P. Morriss, Phys. Rev. A 30, 1528
(1984).

[20] D.J. Evans, J. Chem. Phys. 78, 3297 (1983).

[21] W.G. Hoover, A.J.C. Ladd, and B. Moran, Phys. Rev.
Lett. 48, 1818 (1982).

[22] D.J. Evans, W.G. Hoover, B.H. Failor, B. Moran, and
A.J.C. Ladd, Phys. Rev. A 28, 1016 (1983).

[23] A.W. Lees and S.F. Edwards, J. Phys. C 5, 1921 (1972).

[24] M. Wadati and M. Toda, J. Phys. Soc. Jpn. 32, 1147
(1972).

[25] S. Hachisu, Y. Kobayashi, and A. Kose, J. Colloid Inter-
face Sci. 42, 342 (1973).

[26] T. Yamada and S. Nosé, Phys. Rev. A 42, 6282 (1990).

[27] D.J. Barber and R. Loudon, An Introduction to the Prop-
erties of Condensed Matter (Cambridge University Press,
Cambridge, 1989).

(28] J.C. van der Werff, C.G. de Kruif, C. Blom, and J.
Mellema, Phys. Rev. A 39, 795 (1989).

[29] D. Andrew, R. Jones, B. Leary, and D.V. Boger, J. Col-
loid Interface Sci. 147, 479 (1991).

[30] J.D. Landgrebe and S.E. Pratsins, J. Colloid Interface
Sci. 139, 63 (1990).

[31] G.P. Morriss and D.J. Evans, Phys. Rev. A 32, 2425
(1985).

[32] M.P. Allen and G. Maréchal, Mol. Phys. 57, 7 (1986).

[33] J.D. Ferry, Viscoelastic Properties of Polymers, 3rd ed.
(Wiley, New York, 1980).



